Magnitud y orientación R2Version en ligne Calcula el módulo y el argumento del vector R2 par Julio Arreola 1 A = (-31, 6) a │A│ = 31.58, [169] b │A│ = 31.58, [164.6] c │A│ = 29.55, [164.6] d │A│ = 29.55, [169] 2 A = (-2 , 13) a |A| = 13.15, [ 98.75 ] b |A| = 13.15, [ 75.96 ] c |A| = 14.87, [ 250.35 ] d |A| = 15, [ 98.75 ] 3 A = (-12 , -14) a |A| = 14.04, [ 85.91 ] b |A| = 18.44, [ 130.6 ] c |A| = 18.44, [ 145.49 ] d |A| = 11.4, [ 52.13 ] 4 A = (3 , -17) a |A| = 18.25, [ 260.54 ] b |A| = 17.26, [ 234.78 ] c |A| = 17.26, [ 79.99 ] d |A| = 6.32, [ 18.43 ] 5 A = (14 , -11) a |A| = 16.64, [ 327.26 ] b |A| = 27.59, [ 133.53 ] c |A| = 17.8, [ 41.19 ] d |A| = 17.8, [ 38.14 ] 6 A = (3 , 19) a |A| = 19.24, [ 81.03 ] b |A| = 6.71, [ 81.03 ] c |A| = 19.24, [ 360 ] d |A| = 15.62, [ 230.19 ] 7 A = (-12 , -13) a |A| = 21.93, [ 155.77 ] b |A| = 17.69, [ 132.71 ] c |A| = 17.69, [ 308.66 ] d |A| = 21.93, [ 132.71 ] 8 A = (-3 , -10) a |A| = 13.93, [ 68.96 ] b |A| = 13.93, [ 106.7 ] c |A| = 10.44, [ 106.7 ] d |A| = 10.44, [ 43.15 ] 9 A = (14 , -18) a |A| = 23.6, [ 126.38 ] b |A| = 22.8, [ 142.13 ] c |A| = 23.6, [ 68.75 ] d |A| = 22.8, [ 52.12 ] 10 A = (-19 , -19) a |A| = 26.87, [ 135 ] b |A| = 16.64, [ 135 ] c |A| = 16.64, [ 32.74 ] d |A| = 22.67, [ 48.58 ] 11 A = (-13 , 3) a |A| = 21.4, [ 127.41 ] b |A| = 13.34, [ 167.01 ] c |A| = 13.34, [ 356.42 ] d |A| = 21.4, [ 63.43 ] 12 A = (-15 , 11) a |A| = 17.8, [ 143.75 ] b |A| = 18.03, [ 56.31 ] c |A| = 18.6, [ 143.75 ] d |A| = 18.36, [ 29.36 ] 13 A = (3 , -8) a |A| = 24.04, [ 45 ] b |A| = 8.54, [ 227.12 ] c |A| = 24.84, [ 45 ] d |A| = 8.54, [ 69.43 ] 14 A = (-6 , 13) a |A| = 14.32, [ 114.78 ] b |A| = 14.32, [ 108.43 ] c |A| = 13.42, [ 114.78 ] d |A| = 23.02, [ 145.62 ] 15 A = (-16 , -18) a |A| = 8.54, [ 159.44 ] b |A| = 24.08, [ 131.64 ] c |A| = 24.08, [ 289.44 ] d |A| = 5.66, [ 289.44 ] 16 A = (-7 , 15) a |A| = 16.12, [ 115.02 ] b |A| = 16.55, [ 216.25.02 ] c |A| = 16.55, [ 115.02 ] d |A| = 18.6, [ 216.25 ] 17 A = (3 , -16) a |A| = 16.28, [ 142.59 ] b |A| = 21.47, [ 79.38 ] c |A| = 20.22, [ 278.53 ] d |A| = 16.28, [ 79.38 ] 18 A = (8 , -4) a |A| = 8.94, [ 26.51 ] b |A| = 8.94, [ 116.57 ] c |A| = 18.44, [ 116.57 ] d |A| = 16.4, [ 217.57 ] 19 A = (6 , -13) a |A| = 13.15, [ 81.25 ] b |A| = 14.32, [ 65.23 ] c |A| = 14.32, [ 20.56 ] d |A| = 20.88, [ 65.23 ] 20 A = (-12 , -8) a |A| = 15.13, [ 277.59 ] b |A| = 13.04, [ 213.69.4 ] c |A| = 14.42, [ 146.32 ] d |A| = 14.42, [ 326.31 ] 21 A = (5 , -9) a |A| = 10.3, [ 302.74 ] b |A| = 8.06, [ 209.74 ] c |A| = 15.23, [ 60.96 ] d |A| = 10.3, [ 60.96 ] 22 A = (-7 , -2) a |A| = 7.28, [ 164.06 ] b |A| = 18.87, [ 32.01 ] c |A| = 7.28, [ 244.8 ] d |A| = 2.24, [ 116.57 ] 23 A = (7 , 15) a |A| = 18.38, [ 157.62 ] b |A| = 16.55, [ 64.98 ] c |A| = 18.44, [ 229.4 ] d |A| = 16.55, [ 18.43 ] 24 A = (17 , -2) a |A| = 21.19, [ 19.29 ] b |A| = 17.12, [ 227.29 ] c |A| = 17.12, [ 6.79 ] d |A| = 9.06, [ 6.34 ] 25 A = (12 , 5) a |A| = 18.68, [ 15.52 ] b |A| = 5.83, [ 149.04 ] c |A| = 13, [ 278.75 ] d |A| = 13, [ 22.62 ] 26 A = (-11 , -14) a |A| = 17.8, [ 128.17 ] b |A| = 17.8, [ 166.76 ] c |A| = 19.1, [ 263.99 ] d |A| = 20.1, [ 264.29 ] 27 A = (17 , -12) a |A| = 19.72, [ 120.47 ] b |A| = 20.81, [ 35.22 ] c |A| = 20.81, [ 81.47 ] d |A| = 21.4, [ 307.41 ] 28 A = (19 , -10) a |A| = 12.17, [ 260.54 ] b |A| = 20.81, [ 27.75 ] c |A| = 21.47, [ 27.75 ] d |A| = 21.47, [ 226.74 ] 29 A = (8 , -18) a |A| = 19.7, [ 290.56 ] b |A| = 18.6, [ 126.25 ] c |A| = 12.04, [ 66.04 ] d |A| = 19.7, [ 66.04 ] 30 A = (-20 , 10) a |A| = 22.36, [ 153.43 ] b |A| = 22.36, [ 114.78 ] c |A| = 14.76, [ 453.43 ] d |A| = 21.19, [ 199.29 ] 31 A = (-11 , 16) a |A| = 20.25, [ 124.51 ] b |A| = 19.42, [ 124.51 ] c |A| = 19.42, [ 135 ] d |A| = 21.02, [ 115.35 ] 32 A = (8 , 15) a |A| = 11.4, [ 105.26 ] b |A| = 5, [ 61.93 ] c |A| = 17, [ 61.93 ] d |A| = 17, [ 329.04 ] 33 A = (-19 , 18) a |A| = 26.17, [ 343.3 ] b |A| = 16.12, [ 172.87 ] c |A| = 16.64, [ 136.55 ] d |A| = 26.17, [ 136.55 ] 34 A = (-4 , 19) a |A| = 19.42, [ 101.89 ] b |A| = 19.42, [ 213.69 ] c |A| = 9.43, [ 101.69 ] d |A| = 9.43, [ 337.62 ] 35 A = (3 , 13) a |A| = 15 [ 321.71 ] b |A| = 13.34, [ 77 ] c |A| = 13.34, [ 273.81 ] d |A| = 15 [ 77 ] 36 A = (12 , -15) a |A| = 4.24, [ 51.34 ] b |A| = 4.24, [ 240.26 ] c |A| = 19.21, [ 51.34 ] d |A| = 19.21, [ 290.56 ] 37 A = (-19 , 4) a |A| = 19.42, [ 165.96 ] b |A| = 19.31, [ 168.11 ] c |A| = 13.34, [ 257.01 ] d |A| = 19.42, [ 168.11 ] 38 A = (-7 , -13) a |A| = 14.76, [ 118.31 ] b |A| = 14.76, [ 231.71 ] c |A| = 19.85, [ 118.31 ] d |A| = 19.85, [ 219.29 ] 39 A = (-8 , -8) a |A| = 25.5, [ 341.57 ] b |A| = 11.31, [ 135 ] c |A| = 11.31, [ 330.64 ] d |A| = 25.5, [ 135 ] 40 A = (-20 , 18) a |A| = 23.6, [ 138.01 ] b |A| = 23.6, [ 304.99 ] c |A| = 26.91, [ 138.01 ] d |A| = 26.91, [ 19.98 ] 41 A = (18 , -15) a |A| = 23.43, [ 108.43 ] b |A| = 13, [ 39.8 ] c |A| = 13, [ 228.81 ] d |A| = 23.43, [ 39.8 ] 42 A = (45, -21) a │A│ = 49.66, [25.02] b │A│ = 56.65, [20.68] c │A│ = 55.36, [16.79] d │A│ = 57.87, [9.95] 43 A = (-13, -20) a │A│ = 23.85, [123.03] b │A│ = 23.85, [128.17] c │A│ = 12.08, [128.17] d │A│ = 12.08, [123.03] 44 A = (-33, 48) a │A│ = 58.25, [124.51] b │A│ = 58.25, [118.44] c │A│ = 63.16, [118.44] d │A│ = 63.16, [124.51] 45 A = (15, 18) a │A│ = 23.43, [50.19] b │A│ = 23.43, [55.18] c │A│ = 39.7, [55.18] d │A│ = 39.7, [50.19] 46 A = (-2, -35) a │A│ = 35.06, [93.27] b │A│ = 35.06, [87.95] c │A│ = 22.14, [87.95] d │A│ = 22.14, [93.27] 47 A = (30, 13) a │A│ = 32.7, [23.45] b │A│ = 32.7, [23.64] c │A│ = 36.24, [23.64] d │A│ = 36.24, [23.45] 48 A = (11, 38) a │A│ = 39.56, [73.86] b │A│ = 39.56, [64.54] c │A│ = 56.6, [64.54] d │A│ = 56.6, [73.86] 49 A = (13, -24) a │A│ = 27.29, [61.55] b │A│ = 27.29, [53.13] c │A│ = 31.4, [53.13] d │A│ = 31.4, [61.55] 50 A = (-14, -30) a │A│ = 33.11, [115.01] b │A│ = 33.11, [117.64] c │A│ = 20.1, [117.64] d │A│ = 20.1, [115.01] 51 A = (-44, -37) a │A│ = 57.49, [139.94] b │A│ = 57.49, [138.72] c │A│ = 44.2, [138.72] d │A│ = 44.2, [139.94] 52 A = (30, 46) a │A│ = 54.92, [56.89] b │A│ = 54.92, [50.19] c │A│ = 72.25, [50.19] d │A│ = 72.25, [56.89]