Icon Créer jeu Créer jeu

Mastering SQL Window Functions

Compléter

Drills to master window functions in SQL

Téléchargez la version pour jouer sur papier

0 fois fait

Créé par

United States

Top 10 résultats

Il n'y a toujours pas de résultats pour ce jeu. Soyez le premier à apparaître dans le classement! pour vous identifier.
Créez votre propre jeu gratuite à partir de notre créateur de jeu
Affrontez vos amis pour voir qui obtient le meilleur score dans ce jeu

Top Jeux

  1. temps
    but
  1. temps
    but
temps
but
temps
but
 
game-icon

Compléter

Mastering SQL Window FunctionsVersion en ligne

Drills to master window functions in SQL

par Good Sam
1

amount OVER sale_date SELECT running_total ORDER SUM amount BY sale_date sales AS FROM

Problem 1 : Calculate Running Total
Question : You have a table sales ( sale_date DATE , amount DECIMAL ) . Write a SQL query to calculate a running total of amount , ordered by sale_date .

Solution :

, ,
( ) ( )
;

2

amount CURRENT FROM UNBOUNDED AND SELECT AND OVER PRECEDING as ORDER BETWEEN CURRENT moving_avg FOLLOWING ROW sales ROW FROM ROW ORDER BY as AVG BY AND sales amount AND SUM AVG ORDER 3 sum_to_end UNBOUNDED amount OVER ROWS running_total amount BY FROM as BY AND moving_avg ROWS sale_date 6 FROM sale_date BETWEEN ROWS SUM CURRENT sale_date PRECEDING sales ROWS CURRENT AVG ROWS ORDER sales ORDER BETWEEN amount amount as sale_date sale_date sale_date 3 amount SELECT ROW current_avg amount SELECT BY amount sales BETWEEN FROM OVER OVER ROW BETWEEN FOLLOWING sale_date as sale_date PRECEDING OVER sale_date SELECT CURRENT

Problem 2 : Calculate Moving Average
Question : Calculate a 7 - day moving average of sales from the sales table .

Solution :

, ,
( ) ( )
;

Example 2 : Fixed Range with Both PRECEDING and FOLLOWING

, ,
( ) ( )
;

This calculates the average amount using a window that includes three rows before , the current row , and three rows after the current row .

Example 3 : From Start of Data to Current Row
, ,
( ) ( )
;

This query computes a running total starting from the first row in the partition or result set up to the current row .

Example 4 : Current Row to End of Data
SELECT sale_date , amount ,
( ) ( )
;

This sums the amount from the current row to the last row of the partition or result set .

Example 5 : Current Row Only
, ,
( ) ( )
;

This calculates the average of just the current row's amount , which effectively returns the amount itself .

3

total_purchases AS RANK ORDER id BY customers rank FROM total_purchases OVER DESC SELECT name

Problem 3 : Rank Customers by Sales

Question : From a table customers ( id INT , name VARCHAR , total_purchases DECIMAL ) , rank customers based on their total_purchases in descending order .

Solution :

, , ,
( ) ( )
;
Explanation : RANK ( ) assigns a unique rank to each row , with gaps in the ranking for ties , based on the total_purchases in descending order .

4

sales BY amount sale_date AS FROM ORDER row_num SELECT sale_date ROW_NUMBER() OVER

Problem 4 : Row Numbering

Question : Assign a unique row number to each sale in the sales table ordered by sale_date .

Solution :

, ,
( )
;

Explanation : ROW_NUMBER ( ) generates a unique number for each row , starting at 1 , based on the ordering of sale_date .

5

purchases SELECT PARTITION FROM MIN customer_id AS customer_id OVER first_purchase BY purchase_date

Problem 5 : Find the First Purchase Date for Each Customer
Question : Given a table purchases ( customer_id INT , purchase_date DATE ) , write a SQL query to find the first purchase date for each customer .

Solution :

, ( ) ( )
;

Explanation : MIN ( ) window function is used here , partitioned by customer_id so that the minimum purchase date is calculated for each customer separately .

6

amount AS 1 amount OVER SELECT sale_date change_in_amount sale_date amount AS amount ORDER LAG BY LAG ORDER sales_data previous_day_amount 1 BY sale_date OVER FROM

The LAG function is very useful in scenarios where you need to compare successive entries or calculate differences between them . For example , calculating day - over - day sales changes :


SELECT sale_date ,
amount ,
LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS previous_day_amount ,
amount - LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS change_in_amount
FROM sales_data ;



,
,
( , ) ( ) ,
- ( , ) ( )
;

In this query , the change_in_amount field computes the difference in sales between consecutive days . If the LAG function references a row that doesn't exist ( e . g . , the first row in the dataset ) , it will return NULL unless a default value is specified .


The LAG window function in SQL is used to access data from a previous row in the same result set without the need for a self - join . It's a part of the SQL window functions that provide the ability to perform calculations across rows that are related to the current row . LAG is particularly useful for comparisons between records in ordered data .

How LAG Works :
LAG takes up to three arguments :

Expression : The column or expression you want to retrieve from a preceding row .
Offset : An optional integer specifying how many rows back from the current row the function should look . If not specified , the default is 1 , meaning the immediate previous row .
Default : An optional argument that provides a default value to return if the LAG function attempts to go beyond the first row of the dataset .
Syntax :
LAG ( expression , offset , default ) OVER ( [ PARTITION BY partition_expression ] ORDER BY sort_expression )


educaplay suscripción