Icon Créer jeu Créer jeu

Mastering SQL Window Functions

Compléter

Drills to master window functions in SQL

Téléchargez la version pour jouer sur papier

0 fois fait

Créé par

United States

Top 10 résultats

Il n'y a toujours pas de résultats pour ce jeu. Soyez le premier à apparaître dans le classement! pour vous identifier.
Créez votre propre jeu gratuite à partir de notre créateur de jeu
Affrontez vos amis pour voir qui obtient le meilleur score dans ce jeu

Top Jeux

  1. temps
    but
  1. temps
    but
temps
but
temps
but
 
game-icon

Compléter

Mastering SQL Window FunctionsVersion en ligne

Drills to master window functions in SQL

par Good Sam
1

amount SUM SELECT sales BY OVER ORDER sale_date amount running_total AS sale_date FROM

Problem 1 : Calculate Running Total
Question : You have a table sales ( sale_date DATE , amount DECIMAL ) . Write a SQL query to calculate a running total of amount , ordered by sale_date .

Solution :

, ,
( ) ( )
;

2

sale_date sales BETWEEN amount sales ROW sale_date SUM sale_date FROM FROM PRECEDING sale_date AVG ROWS BY AND SELECT OVER AND OVER 6 ROWS sales sale_date as BY as ORDER ORDER as SUM OVER BY FROM AND CURRENT AND BETWEEN OVER ROW CURRENT amount FROM FOLLOWING amount 3 BETWEEN sales SELECT SELECT UNBOUNDED ROW BETWEEN BY ORDER sales AVG BETWEEN amount as CURRENT moving_avg sum_to_end amount CURRENT ROW amount ROW sale_date UNBOUNDED sale_date running_total amount as AVG amount ROWS PRECEDING SELECT 3 sale_date ROWS amount FROM PRECEDING CURRENT OVER sale_date moving_avg current_avg AND ROWS ORDER FOLLOWING ORDER BY

Problem 2 : Calculate Moving Average
Question : Calculate a 7 - day moving average of sales from the sales table .

Solution :

, ,
( ) ( )
;

Example 2 : Fixed Range with Both PRECEDING and FOLLOWING

, ,
( ) ( )
;

This calculates the average amount using a window that includes three rows before , the current row , and three rows after the current row .

Example 3 : From Start of Data to Current Row
, ,
( ) ( )
;

This query computes a running total starting from the first row in the partition or result set up to the current row .

Example 4 : Current Row to End of Data
SELECT sale_date , amount ,
( ) ( )
;

This sums the amount from the current row to the last row of the partition or result set .

Example 5 : Current Row Only
, ,
( ) ( )
;

This calculates the average of just the current row's amount , which effectively returns the amount itself .

3

total_purchases FROM total_purchases RANK ORDER BY AS id name OVER rank customers DESC SELECT

Problem 3 : Rank Customers by Sales

Question : From a table customers ( id INT , name VARCHAR , total_purchases DECIMAL ) , rank customers based on their total_purchases in descending order .

Solution :

, , ,
( ) ( )
;
Explanation : RANK ( ) assigns a unique rank to each row , with gaps in the ranking for ties , based on the total_purchases in descending order .

4

sale_date FROM ORDER BY row_num SELECT sale_date sales AS ROW_NUMBER() OVER amount

Problem 4 : Row Numbering

Question : Assign a unique row number to each sale in the sales table ordered by sale_date .

Solution :

, ,
( )
;

Explanation : ROW_NUMBER ( ) generates a unique number for each row , starting at 1 , based on the ordering of sale_date .

5

purchases PARTITION BY FROM OVER SELECT customer_id first_purchase customer_id MIN purchase_date AS

Problem 5 : Find the First Purchase Date for Each Customer
Question : Given a table purchases ( customer_id INT , purchase_date DATE ) , write a SQL query to find the first purchase date for each customer .

Solution :

, ( ) ( )
;

Explanation : MIN ( ) window function is used here , partitioned by customer_id so that the minimum purchase date is calculated for each customer separately .

6

1 sales_data LAG AS OVER 1 sale_date amount SELECT AS LAG previous_day_amount change_in_amount ORDER ORDER sale_date amount amount BY FROM OVER BY sale_date amount

The LAG function is very useful in scenarios where you need to compare successive entries or calculate differences between them . For example , calculating day - over - day sales changes :


SELECT sale_date ,
amount ,
LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS previous_day_amount ,
amount - LAG ( amount , 1 ) OVER ( ORDER BY sale_date ) AS change_in_amount
FROM sales_data ;



,
,
( , ) ( ) ,
- ( , ) ( )
;

In this query , the change_in_amount field computes the difference in sales between consecutive days . If the LAG function references a row that doesn't exist ( e . g . , the first row in the dataset ) , it will return NULL unless a default value is specified .


The LAG window function in SQL is used to access data from a previous row in the same result set without the need for a self - join . It's a part of the SQL window functions that provide the ability to perform calculations across rows that are related to the current row . LAG is particularly useful for comparisons between records in ordered data .

How LAG Works :
LAG takes up to three arguments :

Expression : The column or expression you want to retrieve from a preceding row .
Offset : An optional integer specifying how many rows back from the current row the function should look . If not specified , the default is 1 , meaning the immediate previous row .
Default : An optional argument that provides a default value to return if the LAG function attempts to go beyond the first row of the dataset .
Syntax :
LAG ( expression , offset , default ) OVER ( [ PARTITION BY partition_expression ] ORDER BY sort_expression )