Créer jeu
Jouer Relier Colonnes

Distribución F de Snedecor

Distribución T Student.

Distribución Norma

Distribución Uniforme Continua

Distribución Logarítmica Natural

Distribución Gamma

Distribución Weibull.

Distribución Exponencial

Distribución Normal

Distribución Chi Cuadrada

Distribución Uniforme Continua

Distribución binomial de parámetros

Se caracteriza por una función de densidad que es “plana”, y por ello la probabilidad es uniforme en un intervalo cerrado.

Su gráfica se denomina curva normal, es la curva de campana, la cual describe aprox. muchos fenómenos de investigación.

Se asocia a variables que toman los valores 0, 1,. . ., n con probabilidades.

Esta distribución tiene un solo parámetro, v, llamado grados de libertad. Juega un papel muy importante en la inferencia estadística.

La variable aleatoria continua X tiene una distribución logarítmica normal si la variable aleatoria Y=ln(X) tiene una distribución normal.

Se caracteriza por una función de densidad que es “plana”, y por ello la probabilidad es uniforme en un intervalo cerrado

Asume para una variable cuyos posibles valores se disponen de forma simétrica en torno a su media.

Su función de densidad es muy compleja y su gráfica es parecida a la de la distribución chi-cuadrado.

Deriva su nombre de la bien conocida Función gamma, que se estudia en muchas áreas de las matemáticas.

Con n grados de libertad está asociada a 1 variable aleatoria que se obtiene del cociente de 1 variable y la raíz cuadrada de 1 variable.

Cuando la distribución gamma tiene α = 1, y su variable aleatoria continua es X, con parámetro β.

La distribución con una razón de falla más general, ya que describe los tiempos cuando sus razones de falla crecen o decrecen.